
CONTINUOUS TESTING OF 

POWERSHELL WITH PESTER AND 

VISUAL STUDIO TEAM SERVICES
Jeff Scripter

JPScripter@gmail.com

Application Systems Engineer

Wells Fargo

Christopher Mank

christopher@whiteficus.com

Chief Technologist

White Ficus

mailto:JPScripter@gmail.com
mailto:christopher@whiteficus.com


@cmank7

Microsoft MVP

13 Years

Faith, Family, Baseball

@JeffTheScripter

NA

10 years

Brewing Beer and Coffee

Christopher MankJeff Scripter



TESTING TERMINOLOGY

 Unit

 Testing the functionality of individual sections of code. 

 Integration

 Tests the integrations and handoffs between different systems. 

 UAT (User acceptance testing)

 Tests preformed by the business in order to verify that the finished code meets their requirements. 

 Regression

 Tests that ensure that all previous requirements of the code are still met after updates.

 Stress

 Tests to make sure your code is able to handle a full production work load.



WHAT IS PESTER?

 Pester is an open source PowerShell testing framework developed about 5 years ago.

 https://github.com/pester/Pester

 Pester is designed to preform unit testing.

 Focus on logic

 Something is better than nothing

 Clever people have been able to use pester to do a lot more (Integration testing, monitoring, 

etc.)

 Why look at Pester? 

 If done right, it can save you time when doing code updates down the road. 

 It is the best way to preform a self-peer review.

https://github.com/pester/Pester


Pester



CONTINUOUS TESTING

 Automated tests as part of a delivery pipeline

 Fail fast

 Immediate feedback

 Reducing change risk



VISUAL STUDIO TEAM SERVICES (VSTS)

 End-to-end DevOps solution

 Plan, Source Control, Build, Test, Release, Reporting, Wiki, and more!

 Gartner Leader



VSTS and Pester



BEST PRACTICES

 Build testable code

 Use functions

 Use parameters

 Tightly scope commands

 Modular and not Monolithic

 Write-Output

 Pester is more about the code than the test

 Test-Driven Development (TDD)



COMMON STUMBLING BLOCKS

 Objects

 Creating tests on existing scripts

 Scopes and Modules

 ScriptSafe cmdlets



RESOURCES

 Pester

 https://github.com/pester/Pester

 VSTS Documentation

 https://docs.microsoft.com/en-us/vsts/index?view=vsts

 Microsoft DevOps Resource Center

 https://docs.microsoft.com/en-us/azure/devops/

 Release Flow Git Branching

 https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-

vsts-team/

 Pester and PSScriptAnalyzer Tests

 https://workingsysadmin.com/invoking-pester-and-psscriptanalyzer-tests-in-hosted-vsts/

https://github.com/pester/Pester
https://docs.microsoft.com/en-us/vsts/index?view=vsts
https://docs.microsoft.com/en-us/azure/devops/
https://blogs.msdn.microsoft.com/devops/2018/04/19/release-flow-how-we-do-branching-on-the-vsts-team/
https://workingsysadmin.com/invoking-pester-and-psscriptanalyzer-tests-in-hosted-vsts/


Extended Q&A




