
FIRST STEPS IN SECURING

YOUR SCRIPTS
Tim Curwick

MadWithPowerShell.com

Automation Consultant

RBA Consulting

Jeff Scripter

Application Systems Engineer

Wells Fargo

@JeffTheScripter

 MMS Speaker

10 years

Brewing Beer and Coffee

@MadWPowerShell

PowerShell MVP since 2016

Computer geek since 1982

I like cows

Jeff ScripterTim Curwick

OVERVIEW

 PowerShell ‘Security’ Settings

 Execution Policy

 Constrained Language mode

 Just Enough Admin (JEA)

 Over-The-Shoulder Logging

 Access Control Security and PowerShell

 ACLs and Permissions

 Service Accounts and Managed Service Accounts

 Peer Review

 SQL Injection

 Parameterization

 Stored Procedures

 Encryption

 Obfuscation

 Symmetric Encryption

 Data Protection API

 Asymmetric Encryption

 Conclusion

 Questions?

POWERSHELL SECURITY SETTINGS

Lets talk about Execution Policy, Constrained Language Mode and Just Enough

Admin.

EXECUTION POLICY

 What is it:

 It was never a solution to prevent users from running scripts.

 Prevents accidental execution of scripts.

 How does it work:

 It is a tool to determine which scripts can run by DEFAULT

 Bypass – Everything can run

 Unrestricted – Everything can run but you might be prompted for downloaded

 Remote Signed – Scripts and modules with remote bit have to be signed by a trusted publisher

 All Signed – Everything needs to be signed by a trusted publisher

 Restricted – nothing can run

CONSTRAINED LANGUAGE MODE

 What is it:

 A restriction in PowerShell that limits PowerShell

 Full language: everything is available

 Constrained Language: Disables com objects, many .Net objects, custom types, methods, dot sourcing, and

a lot more.

 No language: No PowerShell

 How does it work:

 It follows predefined rules.

 The intent is to use this as part of a larger security stance including app locker.

Quick Demo

 Testing with Constrained Mode:

$ExecutionContext.SessionState.LanguageMode = <0,1,2>

JUST ENOUGH ADMIN (JEA)

 What is it:

 Customizable cmdlet whitelist which runs under the users account, a service account, or a virtual

account.

 How does it work:

 This is defined by a trusted admin and installed on a server.

 The intention is to not give admins normal permissions but rather give define narrow commands

that an admin needs to do their job.

 Capabilities file – What the users can do?

 Session Configuration file - Who can do it? And as Whom?

* Requires PowerShell 5

ACCESS CONTROL SECURITY

How much information is exposed to users?

ACLS AND PERMISSIONS

 When does this matter:

- Scheduled tasks

- File\User input

 What does this protect against:

- Changes in your script

- Inappropriate inputs for your script

- Any sensitive data in your scripts:

- Usernames and Passwords

- Server Names

SERVICE ACCOUNTS VS. MANAGED SERVICE ACCOUNTS

 Service Accounts:

- These are user accounts that are denied interactive logon and used to preform tasks.

- Require password changes

- Password is usually random

 Managed Service Accounts:

- These are user accounts that are denied interactive logon and used to preform tasks.

- Require password changes, but this is handled for you

- Password are random and complex

- Passwords are stored in AD

MANAGED SERVICE ACCOUNTS SETUP (RSAT REQUIRED)

MANAGED SERVICE ACCOUNTS SETUP

MANAGED SERVICE ACCOUNTS SECURITY

MANAGED SERVICE ACCOUNTS SECURITY

Retrieving MSA Passwords

- Only with the system account that has permissions

- 256 bit random password

- Not stored locally*

OVER-THE-SHOULDER LOGGING

 Event Logging:

- Some executions of PowerShell are logged in the event viewer.

 Task manager:

- The command line can be exposed in the task manager.

PEER REVIEW

 There is a lot to consider!

 Learn from your teammates!

SQL INJECTION

What is it and how do you prevent it?

SQL INJECTION

 When are you at risk:

 When Users input data that is intended for a SQL query.

 How do you prevent this:

 Parameterization – This reformats the sql query to automatically sanitize inputs

 Stored Procedures – Using stored procedures doesn’t prevent sql injection but it allows

you to restrict permissions

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

Other Attacks:

- Drop database

- Add permissions for user

- Change records

- Create Backups

PARAMETERIZATION

PARAMETERIZATION

STORED PROCEDURES

What does it not do:
- Prevent Injection attacks

What does it do:
- Give you granular permissions for

specific SQL tasks

STORED PROCEDURES

STORED PROCEDURES

STORED PROCEDURES

ENCRYPTION

How to protect shared secrets and sensitive data.

ENCRYPTION

 It is always best to not store data that you do not need anymore.

 Use the running context as much as possible for permissions.

 Eventually storing sensitive data is unavoidable.

 Encryption is no good if your keys and certificates are not secure.

 There are already great tools built into PowerShell and .NET but there are more

advanced options if you need.

OBFUSCATION

 THIS IS NOT ENCRYPTION!

 Base64 encoding is the most common in PowerShell.

 This is very useful for encoding data for storage

 This is fast!

 Encoding 10,000 times ~0.2 seconds

 Decoding 10,000 times ~0.18 seconds

OBFUSCATION

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Base64String = [Convert]::ToBase64String($bytes)

$Base64String|clip

$Base64String

 Decoding:

$ConvertedBytes = [Convert]::FromBase64String('UGFzc3dvcmQxMjM=')

[System.Text.Encoding]::UTF8.Getstring($ConvertedBytes)

SYMMETRIC ENCRYPTION

 This is a common and well respected encryption solution.

 Disk encryption

 File encryption

 SQL encryption

 Data Protection API

 Speeds

(Convertfrom-securestring)Encoding 10,000 times ~4.5 seconds

(Convertfrom-securestring)Encoding Decoding 10,000 times ~3.7 seconds

(.Net)Encoding 10,000 times ~1 seconds

(.Net)Encoding Decoding 10,000 times ~1.06 seconds

SYMMETRIC ENCRYPTION

 Encoding:

$Userinput = 'someParam2Secure'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

$secure = ConvertTo-SecureString -String ‘Password123' -AsPlainText -Force

ConvertFrom-SecureString -SecureString $secure -Key $key

 Decoding:

$securestring2 = ConvertTo-SecureString -Key $key -String
'76492d1116743f0423413b16050a5345MgB8AGMASwBCAE0ASABWAEEASABCAGkAZgBLAGgAUABrAFcA
MwBGAEEAcgB5AEEAPQA9AHwAMAAwADcAMQBlADkAMwBhAGUAZABlAGEAMgBjADAANwBiADkAYQA
zADkANQBkADIANgBiADIANgAzAGQAZgBlAA=='

[System.Runtime.InteropServices.marshal]::PtrToStringAuto([System.Runtime.InteropServices.marshal]::Secu
reStringToBSTR($securestring))

DPAPI ENCRYPTION

 This is the mechanism that is used by secure data in the windows OS.

Local Machine - Local WIFI Passwords, windows services passwords, Certificate Private keys

Current User - IE saved passwords, Credential Manager, Certificate Private keys, App Passwords
(Chrome, Skype Dropbox, Icloud)

 This uses user password hash and system information to generate 256 bit keys.

 Speeds

(Convertfrom-securestring)Encoding 10,000 times ~10 seconds

(Convertfrom-securestring)Encoding Decoding 10,000 times ~8.3 seconds

(.Net)Encoding 10,000 times ~8.6 seconds

(.Net)Encoding Decoding 10,000 times ~8.6 seconds

DPAPI ENCRYPTION

 Encoding:

$securestring = ConvertTo-SecureString -String 'Password123' -AsPlainText -Force

ConvertFrom-SecureString -SecureString $securestring

 Decoding:

ConvertTo-SecureString
'01000000d08c9ddf0115d1118c7a00c04fc297eb01000000010a0f4cb8ab5a42a48998a4aa3754
d900000000020000000000106600000001000020000000ff6cfd739a8c52f3f06ff44c2089b356af9
52fc12ab9daec787377a90dfc9f51000000000e800000000200002000000034a67856119722d27a
3d0663d439373358e13cd2b2200802c16c8ad7084caa8f200000005e1053fa55aa396212a0dbbb
5e29cc947cf293a18a9310a0bcf6369ccd81d286400000003c1c7887c32c25c6e240761bedad3be
a05d68b4edb2b4157f3a3cda2e3062cdcb1fdd9b41b17db1f917706c27abe9cde1e4ece48800eb
85a867b3e263b916422'

[System.Runtime.InteropServices.marshal]::PtrToStringAuto([System.Runtime.InteropServices.ma
rshal]::SecureStringToBSTR($securestring))

ASYMMETRIC ENCRYPTION

 This is mainly useful when encryption and decryption need to be controlled separately.

 SSL

 Signing

 Try to use a trusted CA

 This is less common in PowerShell

 Speeds

(.Net)Encoding 10,000 times ~1.2 seconds

(.Net)Encoding Decoding 10,000 times ~17.9 seconds

ASYMMETRIC ENCRYPTION

 Encoding:

$cert = New-SelfSignedCertificate -Subject "Encrypt" -KeyUsage KeyEncipherment, DataEncipherment -Provider
"Microsoft Enhanced RSA and AES Cryptographic Provider" -CertStoreLocation Cert:\CurrentUser\my

$pwd = 'Password123'

#$cert = get-item Cert:\CurrentUser\my\ABE7B616CF9858235072CE715A0DCC5F5436107A

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$encryptedblob = $cert.PublicKey.Key.Encrypt($bytes,$true)

$EncryptedBase64String = [Convert]::ToBase64String($encryptedblob)

 Decoding:

$encryptedBytes = [System.Convert]::FromBase64String($EncryptedBase64String)

$pwdbytes = $cert.PrivateKey.Decrypt($encryptedBytes, $true)

[System.Text.Encoding]::UTF8.GetString($pwdbytes)

ENCRYPTION

 Which Encryption method is the best:

- It depends

 I still have code that can expose passwords

- Encryption separates the pieces needed to retrieve sensitive data.

- Find an operation method for passing the key and certificates into the script.

(Parameters, Retrieve from a management tool, etc)

 Can Multiple encryption solutions be used:

- Yes, but try not to add complexity unnecessarily

Review

 Operation Security

 Peer Reviews are important

 SQL Injection

 This is a common attack vector.

 There are easy steps to prevent it.

 Encryption

 Encryption will not make lazy coding secure.

 This is an important piece of a secure process.

Extended Q&A

EXTRAS?

DPAPI ENCRYPTION – CREDENTIAL MANAGER

 Is the Credential Manager a good place for Passwords:

 It depends

 The API for Credential manager is standard and easy to use and an obvious spot

for hackers

 There is no way to add entropy

https://github.com/davotronic5000/PowerShell_Credential_Manager

MEMORY PROTECTION

 This is used by application with extremely sensitive data

 Requires Specific 16 byte chunks

 This is less common in PowerShell

 Encrypt the data in memory. The result is stored in the same array as the original

data.

MEMORY PROTECTION ENCRYPTION

 Encoding:

$pwd = 'Password'

[byte[]]$Bytes = [System.Text.Encoding]::Unicode.GetBytes($pwd)

$Bytes

[System.Security.Cryptography.ProtectedMemory]::Protect($Bytes,
[System.Security.Cryptography.MemoryProtectionScope]::SameProcess)

$Bytes

 Decoding:

[System.Security.Cryptography.ProtectedMemory]::unProtect($Bytes,
[System.Security.Cryptography.MemoryProtectionScope]::SameProcess)

$Bytes

DPAPI ENCRYPTION -.NET

 Encoding:

$pwd = 'Password123'

$Bytes = [System.Text.Encoding]::Unicode.GetBytes($pwd)

$LMProtectedBytes = [System.Security.Cryptography.ProtectedData]::Protect($Bytes, $null, [System.Security.Cryptography.DataProtectionScope]::LocalMachine)

$CUProtectedBytes = [System.Security.Cryptography.ProtectedData]::Protect($Bytes, $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)

$LMEncryptedString = [Convert]::ToBase64String($lmProtectedBytes)

$LMEncryptedString |clip

$LMEncryptedString

$CUEncrypted4String = [Convert]::ToBase64String($CUProtectedBytes)

$CUEncrypted4String|clip

$CUEncrypted4String

 Decoding:

'01000000d08c9ddf0115d1118c7a00c04fc297eb01000000010a0f4cb8ab5a42a48998a4aa3754d900000000020000000000106600000001000020000000ff6cfd739a8c52f3f06ff44c2089b356af952fc12ab9daec787377
a90dfc9f51000000$LMEncryptedBytes=
[Convert]::FromBase64String('AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAACRDIWpWBPkWMPcyvU/E8FAQAAAACAAAAAAAQZgAAAAEAACAAAAD5y0XdgLmhV7PINeq/qx8DMbfpTzIqIdMZaU5Enu65LAAAAAAOgAAAAAIAACAAAABZczDuLNNvGX
gzkU3zvDqM+M762/wwa6XSCbeU3sYxEiAAAAAnWf+zlZVdJVb46QmbCo9/VIbnS7OQjIMySx1OWJbxOkAAAABIsXtH7nlfGqGJY4Dj1RNmdcVd1blQKq15t9UwWYcPXAcB+tB3hpKvcl/MsTWJjr5ha8QRFdWCcAxH4aDc7r/S')

$LMDecryptedBytes = [System.Security.Cryptography.ProtectedData]::Unprotect($LMEncryptedBytes, $null, [System.Security.Cryptography.DataProtectionScope]::LocalMachine)

[System.Text.Encoding]::Unicode.GetString($LMDecryptedBytes)

$CUEncryptedBytes=
[Convert]::FromBase64String('AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAAQoPTLirWkKkiZikqjdU2QAAAAACAAAAAAAQZgAAAAEAACAAAAC3YgkN7d85y3q3O3Mn6YXyOh1T5EfU4GMg8ohN6RZECAAAAAAOgAAAAAIAACAAAAA1MaVMjrlfYG8J5
lDCtTY39Hmp7hc8QfIbSUiRhKbsFCAAAADallqxWy9HeUw2FoIF5A3LoZ9mMrl8nqikyIm8em9+GkAAAAC8/cq8QTFod93Mbbl0ksNl40Uw5EcH0aegk8AxNgWT7penxgYfSZPIfZ2xbUTDr//i1adtyLDTt/P4LOx+R76+')

$CUDecryptedBytes = [System.Security.Cryptography.ProtectedData]::Unprotect($CUEncryptedBytes, $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)

[System.Text.Encoding]::Unicode.GetString($CUDecryptedBytes)

DPAPI ENCRYPTION - SUBSYSTEM

 Local system

%WINDIR%/System32/Microsoft/Protect

 Current User – Semi Portable

%appdata%\Microsoft\Protect

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Userinput = 'this is not the password but something else!'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

[Byte[]] $iv = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

#or

#$Key = (new-Object Security.Cryptography.PasswordDeriveBytes $Userinput, $Null, "SHA1", 5).GetBytes(32)

#$iv = (new-Object Security.Cryptography.SHA1Managed).ComputeHash([Text.Encoding]::UTF8.GetBytes('0'))[0..15]

default is 256 bit

$aes = [System.Security.Cryptography.Aes]::Create()

$encryptor = $aes.CreateEncryptor($Key,$iv)

$Decryptor = $aes.CreateDecryptor($Key,$iv)

$stream = [System.IO.MemoryStream]::new()

$encryptostream = [System.Security.Cryptography.CryptoStream]::new($stream,$encryptor, 'write')

$EncryptedstreamWriter = [System.IO.StreamWriter]::new($encryptostream)

$EncryptedstreamWriter.Write($pwd)

$EncryptedstreamWriter.close()

$encryptostream.close()

[byte[]]$encryptedBytes = $stream.ToArray()

$encrypted = [Convert]::ToBase64String($encryptedBytes)

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Userinput = 'this is not the password but something else!'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

[Byte[]] $iv = $Key[0..15]

$aes = [System.Security.Cryptography.Aes]::Create()

$encryptor = $aes.CreateEncryptor($Key,$iv)

$Decryptor = $aes.CreateDecryptor($Key,$iv)

$stream = [System.IO.MemoryStream]::new()

$encryptostream = [System.Security.Cryptography.CryptoStream]::new($stream,$encryptor, 'write')

$EncryptedstreamWriter = [System.IO.StreamWriter]::new($encryptostream)

$EncryptedstreamWriter.Write($pwd)

$EncryptedstreamWriter.close()

$encryptostream.close()

[byte[]]$encryptedBytes = $stream.ToArray()

$encrypted = [Convert]::ToBase64String($encryptedBytes)

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$encryptedBytes = [convert]::FromBase64String('UvYe1wRg0QVoxY8ltywJbw==')

$decryptstream = [System.IO.MemoryStream]::new($encryptedBytes)

$decryptostream = [System.Security.Cryptography.CryptoStream]::new($decryptstream,
$Decryptor, 'read')

$DeStreamReader = [io.streamreader]::new($decryptostream)

$DeStreamReader.ReadToEnd()

$DeStreamReader.close()

$cryptostream.close()

$decryptstream.close()

