
FIRST STEPS IN SECURING

YOUR SCRIPTS
Tim Curwick

MadWithPowerShell.com

Automation Consultant

RBA Consulting

Jeff Scripter

Application Systems Engineer

Wells Fargo

@JeffTheScripter

 MMS Speaker

10 years

Brewing Beer and Coffee

@MadWPowerShell

PowerShell MVP since 2016

Computer geek since 1982

I like cows

Jeff ScripterTim Curwick

OVERVIEW

 PowerShell ‘Security’ Settings

 Execution Policy

 Constrained Language mode

 Just Enough Admin (JEA)

 Over-The-Shoulder Logging

 Access Control Security and PowerShell

 ACLs and Permissions

 Service Accounts and Managed Service Accounts

 Peer Review

 SQL Injection

 Parameterization

 Stored Procedures

 Encryption

 Obfuscation

 Symmetric Encryption

 Data Protection API

 Asymmetric Encryption

 Conclusion

 Questions?

POWERSHELL SECURITY SETTINGS

Lets talk about Execution Policy, Constrained Language Mode and Just Enough

Admin.

EXECUTION POLICY

 What is it:

 It was never a solution to prevent users from running scripts.

 Prevents accidental execution of scripts.

 How does it work:

 It is a tool to determine which scripts can run by DEFAULT

 Bypass – Everything can run

 Unrestricted – Everything can run but you might be prompted for downloaded

 Remote Signed – Scripts and modules with remote bit have to be signed by a trusted publisher

 All Signed – Everything needs to be signed by a trusted publisher

 Restricted – nothing can run

CONSTRAINED LANGUAGE MODE

 What is it:

 A restriction in PowerShell that limits PowerShell

 Full language: everything is available

 Constrained Language: Disables com objects, many .Net objects, custom types, methods, dot sourcing, and

a lot more.

 No language: No PowerShell

 How does it work:

 It follows predefined rules.

 The intent is to use this as part of a larger security stance including app locker.

Quick Demo

 Testing with Constrained Mode:

$ExecutionContext.SessionState.LanguageMode = <0,1,2>

JUST ENOUGH ADMIN (JEA)

 What is it:

 Customizable cmdlet whitelist which runs under the users account, a service account, or a virtual

account.

 How does it work:

 This is defined by a trusted admin and installed on a server.

 The intention is to not give admins normal permissions but rather give define narrow commands

that an admin needs to do their job.

 Capabilities file – What the users can do?

 Session Configuration file - Who can do it? And as Whom?

* Requires PowerShell 5

ACCESS CONTROL SECURITY

How much information is exposed to users?

ACLS AND PERMISSIONS

 When does this matter:

- Scheduled tasks

- File\User input

 What does this protect against:

- Changes in your script

- Inappropriate inputs for your script

- Any sensitive data in your scripts:

- Usernames and Passwords

- Server Names

SERVICE ACCOUNTS VS. MANAGED SERVICE ACCOUNTS

 Service Accounts:

- These are user accounts that are denied interactive logon and used to preform tasks.

- Require password changes

- Password is usually random

 Managed Service Accounts:

- These are user accounts that are denied interactive logon and used to preform tasks.

- Require password changes, but this is handled for you

- Password are random and complex

- Passwords are stored in AD

MANAGED SERVICE ACCOUNTS SETUP (RSAT REQUIRED)

MANAGED SERVICE ACCOUNTS SETUP

MANAGED SERVICE ACCOUNTS SECURITY

MANAGED SERVICE ACCOUNTS SECURITY

Retrieving MSA Passwords

- Only with the system account that has permissions

- 256 bit random password

- Not stored locally*

OVER-THE-SHOULDER LOGGING

 Event Logging:

- Some executions of PowerShell are logged in the event viewer.

 Task manager:

- The command line can be exposed in the task manager.

PEER REVIEW

 There is a lot to consider!

 Learn from your teammates!

SQL INJECTION

What is it and how do you prevent it?

SQL INJECTION

 When are you at risk:

 When Users input data that is intended for a SQL query.

 How do you prevent this:

 Parameterization – This reformats the sql query to automatically sanitize inputs

 Stored Procedures – Using stored procedures doesn’t prevent sql injection but it allows

you to restrict permissions

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

Other Attacks:

- Drop database

- Add permissions for user

- Change records

- Create Backups

PARAMETERIZATION

PARAMETERIZATION

STORED PROCEDURES

What does it not do:
- Prevent Injection attacks

What does it do:
- Give you granular permissions for

specific SQL tasks

STORED PROCEDURES

STORED PROCEDURES

STORED PROCEDURES

ENCRYPTION

How to protect shared secrets and sensitive data.

ENCRYPTION

 It is always best to not store data that you do not need anymore.

 Use the running context as much as possible for permissions.

 Eventually storing sensitive data is unavoidable.

 Encryption is no good if your keys and certificates are not secure.

 There are already great tools built into PowerShell and .NET but there are more

advanced options if you need.

OBFUSCATION

 THIS IS NOT ENCRYPTION!

 Base64 encoding is the most common in PowerShell.

 This is very useful for encoding data for storage

 This is fast!

 Encoding 10,000 times ~0.2 seconds

 Decoding 10,000 times ~0.18 seconds

OBFUSCATION

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Base64String = [Convert]::ToBase64String($bytes)

$Base64String|clip

$Base64String

 Decoding:

$ConvertedBytes = [Convert]::FromBase64String('UGFzc3dvcmQxMjM=')

[System.Text.Encoding]::UTF8.Getstring($ConvertedBytes)

SYMMETRIC ENCRYPTION

 This is a common and well respected encryption solution.

 Disk encryption

 File encryption

 SQL encryption

 Data Protection API

 Speeds

(Convertfrom-securestring)Encoding 10,000 times ~4.5 seconds

(Convertfrom-securestring)Encoding Decoding 10,000 times ~3.7 seconds

(.Net)Encoding 10,000 times ~1 seconds

(.Net)Encoding Decoding 10,000 times ~1.06 seconds

SYMMETRIC ENCRYPTION

 Encoding:

$Userinput = 'someParam2Secure'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

$secure = ConvertTo-SecureString -String ‘Password123' -AsPlainText -Force

ConvertFrom-SecureString -SecureString $secure -Key $key

 Decoding:

$securestring2 = ConvertTo-SecureString -Key $key -String
'76492d1116743f0423413b16050a5345MgB8AGMASwBCAE0ASABWAEEASABCAGkAZgBLAGgAUABrAFcA
MwBGAEEAcgB5AEEAPQA9AHwAMAAwADcAMQBlADkAMwBhAGUAZABlAGEAMgBjADAANwBiADkAYQA
zADkANQBkADIANgBiADIANgAzAGQAZgBlAA=='

[System.Runtime.InteropServices.marshal]::PtrToStringAuto([System.Runtime.InteropServices.marshal]::Secu
reStringToBSTR($securestring))

DPAPI ENCRYPTION

 This is the mechanism that is used by secure data in the windows OS.

Local Machine - Local WIFI Passwords, windows services passwords, Certificate Private keys

Current User - IE saved passwords, Credential Manager, Certificate Private keys, App Passwords
(Chrome, Skype Dropbox, Icloud)

 This uses user password hash and system information to generate 256 bit keys.

 Speeds

(Convertfrom-securestring)Encoding 10,000 times ~10 seconds

(Convertfrom-securestring)Encoding Decoding 10,000 times ~8.3 seconds

(.Net)Encoding 10,000 times ~8.6 seconds

(.Net)Encoding Decoding 10,000 times ~8.6 seconds

DPAPI ENCRYPTION

 Encoding:

$securestring = ConvertTo-SecureString -String 'Password123' -AsPlainText -Force

ConvertFrom-SecureString -SecureString $securestring

 Decoding:

ConvertTo-SecureString
'01000000d08c9ddf0115d1118c7a00c04fc297eb01000000010a0f4cb8ab5a42a48998a4aa3754
d900000000020000000000106600000001000020000000ff6cfd739a8c52f3f06ff44c2089b356af9
52fc12ab9daec787377a90dfc9f51000000000e800000000200002000000034a67856119722d27a
3d0663d439373358e13cd2b2200802c16c8ad7084caa8f200000005e1053fa55aa396212a0dbbb
5e29cc947cf293a18a9310a0bcf6369ccd81d286400000003c1c7887c32c25c6e240761bedad3be
a05d68b4edb2b4157f3a3cda2e3062cdcb1fdd9b41b17db1f917706c27abe9cde1e4ece48800eb
85a867b3e263b916422'

[System.Runtime.InteropServices.marshal]::PtrToStringAuto([System.Runtime.InteropServices.ma
rshal]::SecureStringToBSTR($securestring))

ASYMMETRIC ENCRYPTION

 This is mainly useful when encryption and decryption need to be controlled separately.

 SSL

 Signing

 Try to use a trusted CA

 This is less common in PowerShell

 Speeds

(.Net)Encoding 10,000 times ~1.2 seconds

(.Net)Encoding Decoding 10,000 times ~17.9 seconds

ASYMMETRIC ENCRYPTION

 Encoding:

$cert = New-SelfSignedCertificate -Subject "Encrypt" -KeyUsage KeyEncipherment, DataEncipherment -Provider
"Microsoft Enhanced RSA and AES Cryptographic Provider" -CertStoreLocation Cert:\CurrentUser\my

$pwd = 'Password123'

#$cert = get-item Cert:\CurrentUser\my\ABE7B616CF9858235072CE715A0DCC5F5436107A

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$encryptedblob = $cert.PublicKey.Key.Encrypt($bytes,$true)

$EncryptedBase64String = [Convert]::ToBase64String($encryptedblob)

 Decoding:

$encryptedBytes = [System.Convert]::FromBase64String($EncryptedBase64String)

$pwdbytes = $cert.PrivateKey.Decrypt($encryptedBytes, $true)

[System.Text.Encoding]::UTF8.GetString($pwdbytes)

ENCRYPTION

 Which Encryption method is the best:

- It depends

 I still have code that can expose passwords

- Encryption separates the pieces needed to retrieve sensitive data.

- Find an operation method for passing the key and certificates into the script.

(Parameters, Retrieve from a management tool, etc)

 Can Multiple encryption solutions be used:

- Yes, but try not to add complexity unnecessarily

Review

 Operation Security

 Peer Reviews are important

 SQL Injection

 This is a common attack vector.

 There are easy steps to prevent it.

 Encryption

 Encryption will not make lazy coding secure.

 This is an important piece of a secure process.

Extended Q&A

EXTRAS?

DPAPI ENCRYPTION – CREDENTIAL MANAGER

 Is the Credential Manager a good place for Passwords:

 It depends

 The API for Credential manager is standard and easy to use and an obvious spot

for hackers

 There is no way to add entropy

https://github.com/davotronic5000/PowerShell_Credential_Manager

MEMORY PROTECTION

 This is used by application with extremely sensitive data

 Requires Specific 16 byte chunks

 This is less common in PowerShell

 Encrypt the data in memory. The result is stored in the same array as the original

data.

MEMORY PROTECTION ENCRYPTION

 Encoding:

$pwd = 'Password'

[byte[]]$Bytes = [System.Text.Encoding]::Unicode.GetBytes($pwd)

$Bytes

[System.Security.Cryptography.ProtectedMemory]::Protect($Bytes,
[System.Security.Cryptography.MemoryProtectionScope]::SameProcess)

$Bytes

 Decoding:

[System.Security.Cryptography.ProtectedMemory]::unProtect($Bytes,
[System.Security.Cryptography.MemoryProtectionScope]::SameProcess)

$Bytes

DPAPI ENCRYPTION -.NET

 Encoding:

$pwd = 'Password123'

$Bytes = [System.Text.Encoding]::Unicode.GetBytes($pwd)

$LMProtectedBytes = [System.Security.Cryptography.ProtectedData]::Protect($Bytes, $null, [System.Security.Cryptography.DataProtectionScope]::LocalMachine)

$CUProtectedBytes = [System.Security.Cryptography.ProtectedData]::Protect($Bytes, $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)

$LMEncryptedString = [Convert]::ToBase64String($lmProtectedBytes)

$LMEncryptedString |clip

$LMEncryptedString

$CUEncrypted4String = [Convert]::ToBase64String($CUProtectedBytes)

$CUEncrypted4String|clip

$CUEncrypted4String

 Decoding:

'01000000d08c9ddf0115d1118c7a00c04fc297eb01000000010a0f4cb8ab5a42a48998a4aa3754d900000000020000000000106600000001000020000000ff6cfd739a8c52f3f06ff44c2089b356af952fc12ab9daec787377
a90dfc9f51000000$LMEncryptedBytes=
[Convert]::FromBase64String('AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAACRDIWpWBPkWMPcyvU/E8FAQAAAACAAAAAAAQZgAAAAEAACAAAAD5y0XdgLmhV7PINeq/qx8DMbfpTzIqIdMZaU5Enu65LAAAAAAOgAAAAAIAACAAAABZczDuLNNvGX
gzkU3zvDqM+M762/wwa6XSCbeU3sYxEiAAAAAnWf+zlZVdJVb46QmbCo9/VIbnS7OQjIMySx1OWJbxOkAAAABIsXtH7nlfGqGJY4Dj1RNmdcVd1blQKq15t9UwWYcPXAcB+tB3hpKvcl/MsTWJjr5ha8QRFdWCcAxH4aDc7r/S')

$LMDecryptedBytes = [System.Security.Cryptography.ProtectedData]::Unprotect($LMEncryptedBytes, $null, [System.Security.Cryptography.DataProtectionScope]::LocalMachine)

[System.Text.Encoding]::Unicode.GetString($LMDecryptedBytes)

$CUEncryptedBytes=
[Convert]::FromBase64String('AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAAAQoPTLirWkKkiZikqjdU2QAAAAACAAAAAAAQZgAAAAEAACAAAAC3YgkN7d85y3q3O3Mn6YXyOh1T5EfU4GMg8ohN6RZECAAAAAAOgAAAAAIAACAAAAA1MaVMjrlfYG8J5
lDCtTY39Hmp7hc8QfIbSUiRhKbsFCAAAADallqxWy9HeUw2FoIF5A3LoZ9mMrl8nqikyIm8em9+GkAAAAC8/cq8QTFod93Mbbl0ksNl40Uw5EcH0aegk8AxNgWT7penxgYfSZPIfZ2xbUTDr//i1adtyLDTt/P4LOx+R76+')

$CUDecryptedBytes = [System.Security.Cryptography.ProtectedData]::Unprotect($CUEncryptedBytes, $null, [System.Security.Cryptography.DataProtectionScope]::CurrentUser)

[System.Text.Encoding]::Unicode.GetString($CUDecryptedBytes)

DPAPI ENCRYPTION - SUBSYSTEM

 Local system

%WINDIR%/System32/Microsoft/Protect

 Current User – Semi Portable

%appdata%\Microsoft\Protect

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Userinput = 'this is not the password but something else!'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

[Byte[]] $iv = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

#or

#$Key = (new-Object Security.Cryptography.PasswordDeriveBytes $Userinput, $Null, "SHA1", 5).GetBytes(32)

#$iv = (new-Object Security.Cryptography.SHA1Managed).ComputeHash([Text.Encoding]::UTF8.GetBytes('0'))[0..15]

default is 256 bit

$aes = [System.Security.Cryptography.Aes]::Create()

$encryptor = $aes.CreateEncryptor($Key,$iv)

$Decryptor = $aes.CreateDecryptor($Key,$iv)

$stream = [System.IO.MemoryStream]::new()

$encryptostream = [System.Security.Cryptography.CryptoStream]::new($stream,$encryptor, 'write')

$EncryptedstreamWriter = [System.IO.StreamWriter]::new($encryptostream)

$EncryptedstreamWriter.Write($pwd)

$EncryptedstreamWriter.close()

$encryptostream.close()

[byte[]]$encryptedBytes = $stream.ToArray()

$encrypted = [Convert]::ToBase64String($encryptedBytes)

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$pwd = 'Password123'

$bytes = [System.Text.Encoding]::UTF8.GetBytes($pwd)

$Userinput = 'this is not the password but something else!'

$keybytes = [System.Text.Encoding]::UTF8.GetBytes($Userinput)

[Byte[]] $Key = [System.Security.Cryptography.HashAlgorithm]::Create('SHA256').ComputeHash($keybytes)

[Byte[]] $iv = $Key[0..15]

$aes = [System.Security.Cryptography.Aes]::Create()

$encryptor = $aes.CreateEncryptor($Key,$iv)

$Decryptor = $aes.CreateDecryptor($Key,$iv)

$stream = [System.IO.MemoryStream]::new()

$encryptostream = [System.Security.Cryptography.CryptoStream]::new($stream,$encryptor, 'write')

$EncryptedstreamWriter = [System.IO.StreamWriter]::new($encryptostream)

$EncryptedstreamWriter.Write($pwd)

$EncryptedstreamWriter.close()

$encryptostream.close()

[byte[]]$encryptedBytes = $stream.ToArray()

$encrypted = [Convert]::ToBase64String($encryptedBytes)

SYMMETRIC ENCRYPTION - .NET

 Encoding:

$encryptedBytes = [convert]::FromBase64String('UvYe1wRg0QVoxY8ltywJbw==')

$decryptstream = [System.IO.MemoryStream]::new($encryptedBytes)

$decryptostream = [System.Security.Cryptography.CryptoStream]::new($decryptstream,
$Decryptor, 'read')

$DeStreamReader = [io.streamreader]::new($decryptostream)

$DeStreamReader.ReadToEnd()

$DeStreamReader.close()

$cryptostream.close()

$decryptstream.close()

